| 注册
首页|期刊导航|微型电脑应用|低层次和高层次特征相结合的人体动作识别

低层次和高层次特征相结合的人体动作识别

王小念 姚莉秀

微型电脑应用2012,Vol.28Issue(4):43-46,4.
微型电脑应用2012,Vol.28Issue(4):43-46,4.

低层次和高层次特征相结合的人体动作识别

Combination of Low-level and High-level Features for Human Action Recognition

王小念 1姚莉秀1

作者信息

  • 1. 上海交通大学 上海 200240
  • 折叠

摘要

Abstract

A new spatio-temporal interest point detector using 2D Gabor filters is presented to extract features of human action accurately, which is robust to occlusion, lighting changes and camera zooming. A polyhedron with eighty faces model-based spatio-temporal gradient descriptor is created to illustrate the spatio-temporal visual features of human action. A weight histogram is adopted as the action representation based on maximum likelihood estimation making the algorithm more efficient while the weight histogram is more discriminative. The low-level weight histogram and high-level semantic attributes are fused together and the latent Support Vector Machine (SVM) is adopted to find the local optimum of the prediction model. Experiments using some kinds of typical datasets demonstrated that approach achieves a higher recognition rate compared to existing methods.

关键词

动作识别/时空兴趣点/时空梯度/最大似然/动作属性

Key words

Action Recognition/ Spatio-temporal Interest Point/ Spatio-temporal Gradient/ Maximum Likelihood/ Action Attribute

分类

信息技术与安全科学

引用本文复制引用

王小念,姚莉秀..低层次和高层次特征相结合的人体动作识别[J].微型电脑应用,2012,28(4):43-46,4.

微型电脑应用

OACSTPCD

1007-757X

访问量0
|
下载量0
段落导航相关论文