| 注册
首页|期刊导航|岩土工程学报|梯度塑性理论的计算方法与应用

梯度塑性理论的计算方法与应用

桂修力 侯世伟 路德春 梁国平 安超

岩土工程学报2012,Vol.34Issue(6):1094-1101,8.
岩土工程学报2012,Vol.34Issue(6):1094-1101,8.

梯度塑性理论的计算方法与应用

Application of gradient plastic theory based on FEPG platform

桂修力 1侯世伟 1路德春 1梁国平 2安超3

作者信息

  • 1. 北京工业大学城市与工程安全减灾教育部重点实验室,北京100124
  • 2. 中国科学院数学与系统科学研究院飞箭软件有限公司,北京100098
  • 3. 北京大学地球与空间科学学院地球物理系,北京100871
  • 折叠

摘要

Abstract

Based on the FEPG platform, the finite element program using gradient plastic theory is developed to solve mesh dependence after strain softening. A μ-λ algorithm with damp factor is proposed, which can solve the equation of displacement and yield surface simultaneously. The algorithm can not only get displacement and plastic multiplier together, but also avoid the stress haul back calculation in stress return algorithm widely used in finite element solution procedures. The softening modulus and the internal character length are introduced into D-P yield function, and the constitutive model can consider strain softening and gradient effect. The damp Newton algorithm is used to calculate softening problems. The results of a case study show that the μ-λ algorithm with damp factor can be used to solve softening problems, the gradient plastic theory described by finite element weak form has no requirement of continuity, and appropriate outcome can be obtained by the first-order element, thus the mesh dependence of simulation is basically solved.

关键词

梯度塑性理论/μ-λ算法/阻尼牛顿法/应变软化/网格依赖性

Key words

gradient plastic theory μ-λ algorithm damp Newton method strain softening mesh dependence

分类

建筑与水利

引用本文复制引用

桂修力,侯世伟,路德春,梁国平,安超..梯度塑性理论的计算方法与应用[J].岩土工程学报,2012,34(6):1094-1101,8.

基金项目

国家重点基础研究发展计划(973计划)项目 ()

教育部博士点基金项目 ()

国家高技术研究发展计划(863计划) ()

岩土工程学报

OA北大核心CSCDCSTPCD

1000-4548

访问量0
|
下载量0
段落导航相关论文