| 注册
首页|期刊导航|自动化学报|具有模糊聚类功能的双向二维无监督特征提取方法

具有模糊聚类功能的双向二维无监督特征提取方法

皋军 孙长银 王士同

自动化学报2012,Vol.38Issue(4):549-562,14.
自动化学报2012,Vol.38Issue(4):549-562,14.DOI:10.3724/SP.J.1004.2012.00549

具有模糊聚类功能的双向二维无监督特征提取方法

(2D)2UFFCA: Two-directional Two-dimensional Unsupervised Feature Extraction Method with Fuzzy Clustering Ability

皋军 1孙长银 2王士同3

作者信息

  • 1. 东南大学自动化学院 南京 210096
  • 2. 盐城工学院信息工程学院 盐城 224001
  • 3. 苏州大学江苏省计算机信息处理重点实验室 苏州215006
  • 折叠

摘要

Abstract

In this paper, based on the principles of the maximum margin criterion (MMC) and by introducing the fuzzy method and the tensor theory into it, a novel matrix model fuzzy maximum margin criterion (MFMMC) is proposed. Also, on the basis of it, a two-directional two-dimensional unsupervised feature extraction method with fuzzy clustering ability ((2D)2UFFCA) is constructed. This method can directly realize fuzzy clustering of matrix model data. And it can also achieve the two-directional two-dimensional feature extraction of them, that is, the realization of dimension reduction. At the same time, the adjusting parameter γ in the matrix model fuzzy maximum margin criterion is defined reasonably from the respect of geometry intuition, which is proved theoretically. In order to improve the efficiency of feature extraction, an effective method which can find out the projection matrices of matrix model data is presented. The results of tests show the above advantages of the method.

关键词

张量模式/双向二维特征提取/矩阵模式的模糊最大间距判别准则/模糊聚类

Key words

Tensor model, two-directional two-dimensional feature extraction, matrix model fuzzy maximum margin criterion (MFMMC), fuzzy clustering

引用本文复制引用

皋军,孙长银,王士同..具有模糊聚类功能的双向二维无监督特征提取方法[J].自动化学报,2012,38(4):549-562,14.

基金项目

国家自然科学基金(90820002,60903100,61005008),江苏省自然科学基金(BK2011417),江苏省新型环保重点实验室开放课题(AE201068),江苏省计算机信息处理重点实验室开放课题(KJS1126)资助 (90820002,60903100,61005008)

自动化学报

OA北大核心CSCDCSTPCD

0254-4156

访问量0
|
下载量0
段落导航相关论文