| 注册
首页|期刊导航|自动化学报|基于音素解码的语种识别系统联合自适应算法研究

基于音素解码的语种识别系统联合自适应算法研究

邓妍 张卫强 刘加

自动化学报2012,Vol.38Issue(4):652-658,7.
自动化学报2012,Vol.38Issue(4):652-658,7.DOI:10.3724/SP.J.1004.2012.00652

基于音素解码的语种识别系统联合自适应算法研究

Research on Joint Adaptation for Phonotactic Language Recognition

邓妍 1张卫强 1刘加1

作者信息

  • 1. 清华大学电子工程系清华信息科学与技术国家实验室(筹) 北京100084
  • 折叠

摘要

Abstract

For language recognition in real application, a variety of non-language sources (I.e., channel, content, etc.) will induce mismatch between training and test utterances, which affects the recognition accuracy. This paper introduces joint adaptation to deal with the mismatch problem for the phone recognition followed by vector space model (PRVSM) system. We investigate three adaptation methods in different stage of the system: 1) acoustic model adaptation using constrained maximum likelihood linear regression (CMLLR); 2) phonotactic feature adaptation using the universal N-grams; 3) adapt-SVM for the vector space model(VSM).The joint adaptation is carried out by combining these methods and significant improvements can be obtained. Experiments on the NIST LRE 2009 evaluation corpus show that there are relative decreases of 18 % ~ 23 %, 12%~20% and 5%~9% in EER for the 30s, 10s and 3s test conditions, respectively.

关键词

语种识别/音素识别器后接向量空间模型/联合自适应/受约束的最大似然线性回归/支持向量机自适应

Key words

Language recognition, phone recognizer followed by vector space model (PRVSM), joint adaptation, constrained maximum likelihood linear regression (CMLLR), adapt-support vector machines (SVM)

引用本文复制引用

邓妍,张卫强,刘加..基于音素解码的语种识别系统联合自适应算法研究[J].自动化学报,2012,38(4):652-658,7.

基金项目

国家自然科学基金(60931160443,61005019)资助 (60931160443,61005019)

自动化学报

OA北大核心CSCDCSTPCD

0254-4156

访问量0
|
下载量0
段落导航相关论文