| 注册
首页|期刊导航|北京科技大学学报|混合时变时滞神经网络的状态估计器设计

混合时变时滞神经网络的状态估计器设计

张蕾 刘贺平 王健安

北京科技大学学报2012,Vol.34Issue(7):847-852,6.
北京科技大学学报2012,Vol.34Issue(7):847-852,6.

混合时变时滞神经网络的状态估计器设计

Design of state estimators for neural networks with mixed time-varying delays

张蕾 1刘贺平 2王健安3

作者信息

  • 1. 上海海洋大学信息学院,上海201306
  • 2. 北京科技大学自动化学院,北京100083
  • 3. 太原科技大学电子信息工程学院,太原030024
  • 折叠

摘要

Abstract

The state estimation problem was studied for neural networks with mixed discrete and distributed time-varying delays as well as general activation functions. The discrete time-varying delay varies in an interval, where the lower bound is not fixed to be zero. Defining a novel Lyapunov functional and using the Jensen integral inequality, a delay-interval-dependent criterion is provided to design a state estimator through available output measurements in terms of a linear matrix inequality ( LM1), such that the error-state system is globally asymptotically stable. A numerical example was given to illustrate that this result is more effective and less conservative than some existing ones.

关键词

状态估计/时变网络/时滞/神经网络/线性矩阵不等式(LMI)/Lyapunov函数

Key words

state estimation/time-varying networks/delays/neural networks/linear matrix inequalities/Lyapunov functions

分类

计算机与自动化

引用本文复制引用

张蕾,刘贺平,王健安..混合时变时滞神经网络的状态估计器设计[J].北京科技大学学报,2012,34(7):847-852,6.

基金项目

上海海洋大学博士启动基金项目 ()

北京科技大学学报

OA北大核心CSCDCSTPCD

2095-9389

访问量0
|
下载量0
段落导航相关论文