| 注册
首页|期刊导航|电测与仪表|基于主成分与粒子群算法的LS-SVM短期负荷预测

基于主成分与粒子群算法的LS-SVM短期负荷预测

代鑫波 崔勇 周德祥 陈湘华

电测与仪表2012,Vol.49Issue(6):5-9,5.
电测与仪表2012,Vol.49Issue(6):5-9,5.

基于主成分与粒子群算法的LS-SVM短期负荷预测

LS-SVM Short-term Load Forecasting Based on Principal Component Analysis and Improved Particle Swarm Optimization

代鑫波 1崔勇 2周德祥 1陈湘华3

作者信息

  • 1. 华北电力大学,北京102206
  • 2. 河南开封供电公司,河南开封475000
  • 3. 河南兰考供电公司,河南兰考475300
  • 折叠

摘要

Abstract

Short-term load forecasting is of great significance for power system economic operation and development of national economy. Least squares support vector machines (LSSVM) has been successfully applied in load forecasting, which has many unique advantages in the performance of solving the small sample, nonlinear problems. This paper presents a principal component analysis based on support vector machine model, using the principal component analysis to extract the principal components of historical data and eliminate a lot of noise and redundancy, then data extraction from the processed LSSVM training samples, and using improved particle swarm optimization which regards parameters in LSSVM as particles to improve the training speed and prediction accuracy. Finally, the model is applied to short term load forecasting, and has better generalization performance and prediction accuracy compared to SVM and BP neural network.

关键词

负荷预测/主成分分析/粒子群优化/最小二乘支持向量机

Key words

load forecasting/principal component analysis/particle swarm optimization/least squares support vector machine

分类

信息技术与安全科学

引用本文复制引用

代鑫波,崔勇,周德祥,陈湘华..基于主成分与粒子群算法的LS-SVM短期负荷预测[J].电测与仪表,2012,49(6):5-9,5.

基金项目

中央高校基本科研业务费专项资金资助(11QX80) (11QX80)

电测与仪表

OA北大核心CSTPCD

1001-1390

访问量0
|
下载量0
段落导航相关论文