| 注册
首页|期刊导航|海南师范大学学报:自然科学版|常微分方程初值问题的基本数值解法分析

常微分方程初值问题的基本数值解法分析

林爽 张杰

海南师范大学学报:自然科学版2012,Vol.25Issue(2):119-121,3.
海南师范大学学报:自然科学版2012,Vol.25Issue(2):119-121,3.

常微分方程初值问题的基本数值解法分析

Analysis of Basic Numerical Solutions for the Initial Value Problem of Ordinary Differential Equations

林爽 1张杰2

作者信息

  • 1. 大连工业大学信息科学与工程学院,辽宁大连116034
  • 2. 辽宁师范大学数学学院,辽宁大连116029
  • 折叠

摘要

Abstract

The numerical solution of differential equations is widely used in science, technology, production practices and many other fields. This paper analyzed three kinds of basic methods for constructing numerical solutions for initial value problem of ordinary differential equations : difference quotient instead of derivative method, numerical integral method and undetermined coefficients method. At the same time, the paper deduces the Euler series formula and the classical third order Runge-Kutta formula. In addition, the paper pointed out the advantages and disadvantages of each formula and application condition, it also analyzed the convergence and stability of the Euler formula.

关键词

常微分方程/数值解法/收敛性/稳定性

Key words

ordinary differential equations/numerical solution/convergence/stability

分类

数学

引用本文复制引用

林爽,张杰..常微分方程初值问题的基本数值解法分析[J].海南师范大学学报:自然科学版,2012,25(2):119-121,3.

基金项目

国家自然科学基金资助项目 ()

海南师范大学学报:自然科学版

1674-4942

访问量0
|
下载量0
段落导航相关论文