| 注册
首页|期刊导航|应用数学|一类具有阶段结构和时滞的捕食模型的稳定性及Hopf分支

一类具有阶段结构和时滞的捕食模型的稳定性及Hopf分支

王玲书

应用数学2012,Vol.25Issue(1):131-139,9.
应用数学2012,Vol.25Issue(1):131-139,9.

一类具有阶段结构和时滞的捕食模型的稳定性及Hopf分支

Stability and Hopf Bifurcation in a Predator-prey Model with Stage Structure and Time Delay

王玲书1

作者信息

  • 1. 河北经贸大学数学与统计学学院,河北石家庄050061
  • 折叠

摘要

Abstract

A predator-prey system with time delay due to the gestation of the predator and stage structure for both the predator and the prey is proposed and investigated.By analyzing the corresponding characteristic equations,the stability of a positive equilibrium and two boundary equilibria of the system is discussed,respectively.Further,the existence of Hopf bifurcations at the positive equilibrium is also studied.By using the normal form theory and center manifold theorem,formulae determining the direction of bifurcations and the stability of bifurcating periodic solutions are given.

关键词

捕食模型/阶段结构/时滞/稳定性/Hopf分支

Key words

Predator-prey model/Stage structure/Time delay/Stability/Hopf bifur cation

分类

数理科学

引用本文复制引用

王玲书..一类具有阶段结构和时滞的捕食模型的稳定性及Hopf分支[J].应用数学,2012,25(1):131-139,9.

基金项目

Supported by the National Natural Science Foundation of China (11101117,11071254) (11101117,11071254)

应用数学

OA北大核心CSCDCSTPCD

1001-9847

访问量2
|
下载量0
段落导航相关论文