| 注册
首页|期刊导航|应用数学|随机微分方程分步单支theta方法的稳定性

随机微分方程分步单支theta方法的稳定性

李启勇 甘四清

应用数学2012,Vol.25Issue(1):209-213,5.
应用数学2012,Vol.25Issue(1):209-213,5.

随机微分方程分步单支theta方法的稳定性

Stability of Split-step One-leg Theta Methods for Stochastic Differential Equations

李启勇 1甘四清2

作者信息

  • 1. 怀化学院数学系,湖南怀化418008
  • 2. 中南大学数与计算技术学院,湖南长沙410075
  • 折叠

摘要

Abstract

In this paper,we are concerned with the mean-square stability properties of split-step one-leg theta methods for stochastic differential equations (SDEs).First,for a linear scalar test problem,the method with 0 ≤ θ< 1 preserves the mean-square stability of the test equation,but with a stepsize restriction,while the method with θ =1 well preserve the stability property without any constraints on the stepsize.Second,for nonlinear SDEs that have a negative one-sided Lipschitz constant,the method with 1/2 < θo < θ < 1 can reproduce exponential mean-square stability properties under a restriction on stepsize.In the case θ =1,the restriction on stepsize disappears.

关键词

分步单支theta方法/单边Lipschitz条件/均方稳定/非线性稳定

Key words

Split-step one-leg theta methods/One-sided Lipschitz condition/Mean square stability/Nonlinear stability

分类

数理科学

引用本文复制引用

李启勇,甘四清..随机微分方程分步单支theta方法的稳定性[J].应用数学,2012,25(1):209-213,5.

基金项目

Supported by the NSF of China(10871207) and the Hunan Provincial Innovation Foundation for Postgraduates(CX2010B118) (10871207)

应用数学

OA北大核心CSCDCSTPCD

1001-9847

访问量0
|
下载量0
段落导航相关论文