北华大学学报:自然科学版2012,Vol.13Issue(2):141-148,8.
数量幂等矩阵的秩等式的进一步研究
Further Researches on Rank Equalities of Scalar -potent Matrix
摘要
Abstract
If there exist nonzero numbers λ and μ,such that p2 = λp,Q2 =μQ' then P and Q are said to be scalar-potent matrices, where the scalars λ and μ play a basic role. Started from searching the rank equality of the operation of scalar-potent matrices independently of the scalars λ and μ, we obtain the ones for the sum, difference, commutator and Jordan product of scalar-potent matrices P and Q, regardless of the size of λ ,μ. These results are useful expand for given results.关键词
幂等矩阵/数量幂等矩阵/秩等式/换位子/Jordan积Key words
idempotent matrix/scalar-potent matrix/rank equality/commutator/Jordan product分类
数学引用本文复制引用
冯晓霞,陈梅香,晏瑜敏,黄少武,杨忠鹏..数量幂等矩阵的秩等式的进一步研究[J].北华大学学报:自然科学版,2012,13(2):141-148,8.基金项目
基金项目:福建省自然科学基金项目 ()
2008年福建省高校服务海西建设重点项目 ()
福建省教育厅科研基金项目 ()
莆田学院教改项目(JG201018). ()