| 注册
首页|期刊导航|电子科技大学学报|基于自适应BP神经网络的网络流量识别算法

基于自适应BP神经网络的网络流量识别算法

谭骏 陈兴蜀 杜敏 朱锴

电子科技大学学报2012,Vol.41Issue(4):580-585,6.
电子科技大学学报2012,Vol.41Issue(4):580-585,6.DOI:10.3969/j.issn.1001-0548.2012.04.020

基于自适应BP神经网络的网络流量识别算法

Internet Traffic Identification Algorithm Based on Adaptive BP Neural Network

谭骏 1陈兴蜀 1杜敏 1朱锴1

作者信息

  • 1. 四川大学计算机学院网络与可信计算研究所 成都610065
  • 折叠

摘要

Abstract

Internet traffic identification is currently an important challenge for network management Traditional approaches focus on identifying TCP flows and cannot accurately classify emerging network applications. In this paper, a new approach based on adaptive back-propagation (BP) neural network is proposed to identify both TCP and UDP traffic flows. This approach uses the dual particle swarm optimization (PSO) algorithm to optimize the BP neural network. The experimental results show that the proposed approach can classify both TCP and UDP traffic flows at a high rate and can reduce the training time and adjust the number of hidden layer nodes of BP neural network adaptively.

关键词

自适应算法/神经网络/粒子群优化/统计特征/流量识别

Key words

adaptive algorithm/ neural networks/ particle swarm optimization/ statistical characteristic/ traffic identification

分类

信息技术与安全科学

引用本文复制引用

谭骏,陈兴蜀,杜敏,朱锴..基于自适应BP神经网络的网络流量识别算法[J].电子科技大学学报,2012,41(4):580-585,6.

基金项目

国家973项目(2007CB311106) (2007CB311106)

国防重点实验室基金(NEUL20090101) (NEUL20090101)

电子科技大学学报

OA北大核心CSCDCSTPCD

1001-0548

访问量1
|
下载量0
段落导航相关论文