| 注册
首页|期刊导航|国防科技大学学报|基于小波域字典学习方法的图像双重稀疏表示

基于小波域字典学习方法的图像双重稀疏表示

梁锐华 成礼智

国防科技大学学报2012,Vol.34Issue(4):126-131,6.
国防科技大学学报2012,Vol.34Issue(4):126-131,6.

基于小波域字典学习方法的图像双重稀疏表示

Double sparse image representation via learning dictionaries in wavelet domain

梁锐华 1成礼智1

作者信息

  • 1. 国防科技大学理学院,湖南长沙410073
  • 折叠

摘要

Abstract

A novel structured dictionary training algorithm is proposed for double sparse image representation. Based on the double sparse image representation model proposed by Rubinstein, the zero-tree structure of wavelet coefficients was introduced, and the new dictionary atoms were constructed by linear combination of wavelet bases in all high-frequency bands of same orientation across different scales. The linear combination coefficients were learned via K-SVD. The image decomposition and reconstruction algorithm was proposed based on the learned dictionary. The M-term approximation and compression of remote sensing images both proved the better effects of the proposed structured dictionary than the existing dictionaries.

关键词

稀疏表示/字典学习/小波/零树/图像压缩

Key words

sparse representation/ dictionary learning/ wavelet/ zero-tree/ image compression

分类

信息技术与安全科学

引用本文复制引用

梁锐华,成礼智..基于小波域字典学习方法的图像双重稀疏表示[J].国防科技大学学报,2012,34(4):126-131,6.

基金项目

国家自然科学基金资助项目(61072118) (61072118)

国防科技大学学报

OA北大核心CSCDCSTPCD

1001-2486

访问量0
|
下载量0
段落导航相关论文