| 注册
首页|期刊导航|计算机工程|分批处理的K-means算法并行实现

分批处理的K-means算法并行实现

兰远东 刘宇芳 徐涛

计算机工程2012,Vol.38Issue(13):145-147,151,4.
计算机工程2012,Vol.38Issue(13):145-147,151,4.DOI:10.3969/j.issn.1000-3428.2012.13.043

分批处理的K-means算法并行实现

Parallel Implementation of K-means Algorithm with Batch Processing

兰远东 1刘宇芳 1徐涛1

作者信息

  • 1. 惠州学院计算机科学系,广东惠州516007
  • 折叠

摘要

Abstract

K-means algorithm is computationally intensive, time consuming and convergence slow. In order to solve the problem of K-means algorithm, a new set of parallel solution of K-means algorithm is presented. In the General Purpose computation on Graphics Processing Unit(GPGPU) architecture, Compute Unified Device Architecture(CUDA) is used to accelerate K-means algorithm. Based on batch principle, the algorithm uses CUDA's memory more rationally, to avoid access conflict, reduce the number of times of visits for data sets, and improve the efficiency of K-means algorithm. Experimental result in large-scale data set shows that the algorithm has a faster clustering speed.

关键词

数据挖掘/K-means算法/统一计算设备架构/并行算法/聚类分析/图形处理器

Key words

data mining/ K-means algorithm/ Compute Unified Device Architecture(CUDA)/ parallel algorithm/ clustering analysis/ Graphics Processing Unit(GPU)

分类

信息技术与安全科学

引用本文复制引用

兰远东,刘宇芳,徐涛..分批处理的K-means算法并行实现[J].计算机工程,2012,38(13):145-147,151,4.

基金项目

国家“863”先进制造领域基金资助重点项目(2006AA04A120) (2006AA04A120)

广东高校优秀青年创新人才培养计划基金资助项目(LYM09128) (LYM09128)

计算机工程

OACSCDCSTPCD

1000-3428

访问量0
|
下载量0
段落导航相关论文