| 注册
首页|期刊导航|计算机工程|基于隐含狄利克雷分配模型的图像分类算法

基于隐含狄利克雷分配模型的图像分类算法

杨赛 赵春霞

计算机工程2012,Vol.38Issue(14):181-183,3.
计算机工程2012,Vol.38Issue(14):181-183,3.DOI:10.3969/j.issn.1000-3428.2012.14.054

基于隐含狄利克雷分配模型的图像分类算法

Image Classification Algorithm Based on Latent Dirichlet Allocation Model

杨赛 1赵春霞1

作者信息

  • 1. 南京理工大学计算机科学与技术学院,南京210094
  • 折叠

摘要

Abstract

To solve the problem that probabilistic Latent Semantic Analysis(pLSA) model is not suitable for large-scale image dataset, a new image classification algorithm based on Latent Dirichlet Allocation(LOA) model is proposed. It uses Bag-of-Features(BOF) model as images initial description, applies Gibbs sampling to estimate the parameters of LDA model, and gets images distribution in the latent topic space. Images are finally classified by k Nearest Neighbor(kNN) algorithm. Experimental results indicate that, compared with algorithm based on pLSA model, the image classification algorithm based on LDA has more powerful classification performances.

关键词

BOF模型/中层语义特征/隐含狄利克雷分配模型/隐含主题分布特征/k近邻算法/图像分类

Key words

Bag-of-Features(BOF) model/ middle-level semantic feature/ Latent Dirichlet Allocation(LDA) model/ latent topic distribution feature/ k Nearest Neighbor(kNN) algorithm/ image classification

分类

信息技术与安全科学

引用本文复制引用

杨赛,赵春霞..基于隐含狄利克雷分配模型的图像分类算法[J].计算机工程,2012,38(14):181-183,3.

基金项目

国家自然科学基金资助重大项目(90820306) (90820306)

计算机工程

OACSCDCSTPCD

1000-3428

访问量0
|
下载量0
段落导航相关论文