| 注册
首页|期刊导航|计算机工程|基于优胜劣汰规则的异类多种群蚁群算法

基于优胜劣汰规则的异类多种群蚁群算法

张鹏 魏云霞 薛宏全 王永忠

计算机工程2012,Vol.38Issue(18):182-185,4.
计算机工程2012,Vol.38Issue(18):182-185,4.DOI:10.3969/j.issn.1000-3428.2012.18.049

基于优胜劣汰规则的异类多种群蚁群算法

Heterogeneous Multiple Colonies Ant Colony Algorithm Based on Survival of Fittest Rules

张鹏 1魏云霞 2薛宏全 1王永忠3

作者信息

  • 1. 西安理工大学经济与管理学院,西安710048
  • 2. 陕西省银行学校财经商贸部,西安710065
  • 3. 内蒙古兰太实业股份有限公司,内蒙古阿拉善盟750336
  • 折叠

摘要

Abstract

A Heterogeneous Multiple Ant Colony algorithm based on Survival of Fittest rules(HMACSF) is presented. This algorithm introduces more than one type of ant colony. All types of ant colonies with different pheromone updating mechanism and searching traits have mutual compensation of advantages, as well as mutual competitive exclusion. According to the results of the exchanging, HMACSF retains the dominant colonies, weeds out the inferiors, and improves the solving efficiency and diversity of solutions, to easily converge the global optimal solution. A series of Traveling Salesman Problem(TSP) experiments show that this algorithm can generate solutions with better quality and faster speed.

关键词

蚁群/优胜劣汰规则/蚁群算法/旅行商问题/合作规则/竞争规则

Key words

ant colony/ survival of fittest rules/ ant colony algorithm/ Traveling Salesman Problem(TSP)/ collaboration rule/ competition rule

分类

信息技术与安全科学

引用本文复制引用

张鹏,魏云霞,薛宏全,王永忠..基于优胜劣汰规则的异类多种群蚁群算法[J].计算机工程,2012,38(18):182-185,4.

基金项目

西安市科技计划基金资助项目“基于智能视频行为识别的城市公共安全决策支持系统研究”(CXY11191(4)) (CXY11191(4)

计算机工程

OACSCDCSTPCD

1000-3428

访问量0
|
下载量0
段落导航相关论文