| 注册
首页|期刊导航|计算机工程与科学|基于CUDA编程模型的稀疏对角矩阵向量乘优化

基于CUDA编程模型的稀疏对角矩阵向量乘优化

秦晋 龚春叶 胡庆丰 刘杰

计算机工程与科学2012,Vol.34Issue(7):78-83,6.
计算机工程与科学2012,Vol.34Issue(7):78-83,6.DOI:10.3969/j.issn.1007-130X.2012.07.014

基于CUDA编程模型的稀疏对角矩阵向量乘优化

Optimization of Sparse Diagonal Matrix-Vector Multiplication Based on the CUDA Program Model

秦晋 1龚春叶 1胡庆丰 1刘杰1

作者信息

  • 1. 国防科学技术大学计算机学院,湖南长沙410073
  • 折叠

摘要

Abstract

Sparse matrix-vector multiplication is often an important computational kernel in many scientific applications. This paper faces the n-diagonal sparse matrix, uses the CUDA program model and describes a new compress format of sparse matrix based on the DIA compress format (CDIA), and gives each thread fine-grained task distribution. In order to fulfill the characteristics of the align access of memory in CUDA, we transpose the compress matrix and design a fine-grained algorithm and program and do some optimization to the program. In the data experiment, our best implementation achieves up to 39. 6Gflop/s in single-precision and 19. 6Gflop/s in double-precision, and enhances the performance by about 7. 6% and 17. 4% that of Nathan Bell's and Michael Garland's respectively.

关键词

GPU/CDIA/CUDA/稀疏矩阵向量乘

Key words

GPU/CDIA/CUDA/sparse matrix-vector multiplication

分类

信息技术与安全科学

引用本文复制引用

秦晋,龚春叶,胡庆丰,刘杰..基于CUDA编程模型的稀疏对角矩阵向量乘优化[J].计算机工程与科学,2012,34(7):78-83,6.

基金项目

国家自然科学基金资助项目(60673150,60970033) (60673150,60970033)

国家863计划资助项目(2008AA01Z137) (2008AA01Z137)

计算机工程与科学

OA北大核心CSCDCSTPCD

1007-130X

访问量0
|
下载量0
段落导航相关论文