| 注册
首页|期刊导航|计算机工程与科学|基于粒子群优化支持向量机的煤矿水位预测模型

基于粒子群优化支持向量机的煤矿水位预测模型

郭凤仪 郭长娜 王爱军 王洋洋 刘丹

计算机工程与科学2012,Vol.34Issue(7):177-181,5.
计算机工程与科学2012,Vol.34Issue(7):177-181,5.DOI:10.3969/j.issn.1007-130X.2012.07.033

基于粒子群优化支持向量机的煤矿水位预测模型

The Forecast Model of Mine Water Discharge Based on Particle Swarm Optimization and Support Vector Machines

郭凤仪 1郭长娜 1王爱军 2王洋洋 1刘丹1

作者信息

  • 1. 辽宁工程技术大学电气与控制工程,葫芦岛125105
  • 2. 开滦钱家营矿业公司,河北唐山063301
  • 折叠

摘要

Abstract

The support vector machine (SVM) algorithm is of reliable global optimality and good generalization,suitable for the learning of finite samples. However, the results considerably depend on the SVM model parameters and the conventional parameter choosing method by experience is unsatisfactory. Using the particle swarm optimization (PSO) random search strategy, we can establish the optimization parameters of support vector machine. It is shown that ACOSVM is much better in the simulation results than the artificial neural network, which greatly improves in fitting precision,and it has good generalization ability.

关键词

支持向量机/粒子群优化/参数优选/水仓水位

Key words

support vector machine/particle swarm optimization/parameter optimization/water warehouse water level

分类

信息技术与安全科学

引用本文复制引用

郭凤仪,郭长娜,王爱军,王洋洋,刘丹..基于粒子群优化支持向量机的煤矿水位预测模型[J].计算机工程与科学,2012,34(7):177-181,5.

基金项目

辽宁省高校创新团队资助项目(LT2010046) (LT2010046)

计算机工程与科学

OA北大核心CSCDCSTPCD

1007-130X

访问量0
|
下载量0
段落导航相关论文