| 注册
首页|期刊导航|计算机工程与应用|双种群差分进化规划算法

双种群差分进化规划算法

何兵 车林仙 刘初升

计算机工程与应用2012,Vol.48Issue(26):25-31,7.
计算机工程与应用2012,Vol.48Issue(26):25-31,7.DOI:10.3778/j.issn.1002-8331.2012.26.006

双种群差分进化规划算法

Novel bi-group differential evolutionary programming

何兵 1车林仙 2刘初升1

作者信息

  • 1. 中国矿业大学 机电工程学院,江苏徐州221008
  • 2. 泸州职业技术学院 机电工程研究所,四川泸州646005
  • 折叠

摘要

Abstract

The Standard Differential Evolution (SDE) algorithm has the advantages of simplicity, few control parameters required, and easily be used, but has the disadvantage of premature convergence and relatively slow rate for hard optimization problems. The improved DE algorithm, namely Bi-Group Differential Evolutionary Programming (BGDEP), is presented to overcome some drawbacks of the SDE algorithm. The proposed BGDEP algorithm divides the entire population into double subgroups which utilize DE/rand/1/bin and DE/best/2/bin schemes to generate new mutate individuals to evolve next generation in parallel, respectively. In order to interact information between double subgroups, the modified algorithm merges them into one whole population at intervals of δt-periodic generations and divides subsequently this population into new double subgroups by using chaotic recombination operators. In every generation of co-evolution process of bi-group, the best individual in double subgroups is evolved by evolutionary programming with non-uniform mutation operators. Due to the above co-evolution, the proposed algorithm performs significantly fast and robust convergence, and performs a global exploratory search. 4 benchmark 30-dimensional functions in hard optimization fields are utilized to test comparatively performances of the new BGDEP algorithm and the experimental results show that this approach outperforms other 4 algorithms, such as SDEs(I.e., DE/rand/1/bin and DE/best/2/bin strategies), Bi-Group Differential Evolution(BGDE) and Evolutionary Programming with Non-Uniform Mutation(NUMEP) , etc., in terms of solution accuracy, robustness, convergence speed and global exploring ability.

关键词

差分进化算法/进化规划算法/双种群/混沌重组策略/非均匀变异

Key words

differential evolution/ evolutionary programming/ bi-group/ chaotic recombination strategy/ non-uniform mutation

分类

信息技术与安全科学

引用本文复制引用

何兵,车林仙,刘初升..双种群差分进化规划算法[J].计算机工程与应用,2012,48(26):25-31,7.

基金项目

四川省应用基础研究计划项目(No.2008JY0163) (No.2008JY0163)

泸州市重点科技计划项目(No.2010-S-21(2/7)). (No.2010-S-21(2/7)

计算机工程与应用

OACSCDCSTPCD

1002-8331

访问量0
|
下载量0
段落导航相关论文