| 注册
首页|期刊导航|计算机与现代化|基于改进PSO算法和LS-SVM的苹果分级检测

基于改进PSO算法和LS-SVM的苹果分级检测

夏卿 李先锋

计算机与现代化Issue(5):161-163,166,4.
计算机与现代化Issue(5):161-163,166,4.DOI:10.3969/j.issn.1006-2475.2012.05.045

基于改进PSO算法和LS-SVM的苹果分级检测

Detection of Apple Grading Based on Improved PSO Algorithm and LS-SVM

夏卿 1李先锋2

作者信息

  • 1. 盐城市产品质量监督检验所,江苏盐城224005
  • 2. 盐城工学院信息工程学院,江苏盐城224051
  • 折叠

摘要

Abstract

To solve the low accuracy and velocity of apple grading, a grading method of LS-SVM based on improved PSO algorithm is presented, which is a new improved form by synthesizing the existing model of PSO. This method can optimize features and reduce the number of training samples greatly before classification, so as to enhance the training efficiency. Experimental results on the Fuji apple database show that the method can extract 5 optimal features from 16 shape features and achieve a high correct identification ratio which is up to 96% , the application effect is very notable so the proposed method is effective.

关键词

苹果分级/粒子群优化算法/最小二乘支持向量机

Key words

apple grading/ particle swarm optimization (PSO)/ least squares support vector machines (LS-SVM)

分类

信息技术与安全科学

引用本文复制引用

夏卿,李先锋..基于改进PSO算法和LS-SVM的苹果分级检测[J].计算机与现代化,2012,(5):161-163,166,4.

基金项目

盐城工学院重点建设学科开放基金资助项目(XKY2010021) (XKY2010021)

计算机与现代化

OACSTPCD

1006-2475

访问量0
|
下载量0
段落导航相关论文