| 注册
首页|期刊导航|计算机应用研究|基于能量函数和模块最优化的不确定图聚类

基于能量函数和模块最优化的不确定图聚类

丁悦 张阳 王勇 李伟卫

计算机应用研究2012,Vol.29Issue(8):3173-3175,3.
计算机应用研究2012,Vol.29Issue(8):3173-3175,3.DOI:10.3969/j.issn.1001-3695.2012.08.099

基于能量函数和模块最优化的不确定图聚类

Clustering uncertain graphs through energy function and modularity optimization

丁悦 1张阳 1王勇 2李伟卫3

作者信息

  • 1. 西北农林科技大学信息工程学院,陕西杨凌712100
  • 2. 南京大学计算机软件新技术国家重点实验室,南京210093
  • 3. 西北工业大学计算机学院,西安710072
  • 折叠

摘要

Abstract

In order to indicate that the presence of uncertainty has a clustering effect can not be ignored, this paper improved a algorithm called LinLogLayout which optimized LinLog and related energy models to compute layouts, and Newman and Gir-van' s Modularity to compute clusterings and enabled it to deal with uncertain graphs. In addition, it proposed an explicit definition of uncertain graph and generated uncertain graphs subject to Zipf distribution, and then related improvements made to the algorithm in order to meet the requirements. After evaluation on both certain graphs and uncertain graphs, synthetic data-sets and real datasets, it demonstrates that the improved LinLogLayout algorithm can handle both certain and uncertain graphs well, meanwhile the results indicate that the presence of uncertainty has a clustering effect can not be ignored.

关键词

不确定图/图挖掘/能量模型/模块化聚类/图聚类

Key words

uncertain graph/graph mining/energy models/modularity clustering/graph clustering

分类

信息技术与安全科学

引用本文复制引用

丁悦,张阳,王勇,李伟卫..基于能量函数和模块最优化的不确定图聚类[J].计算机应用研究,2012,29(8):3173-3175,3.

基金项目

国家自然科学基金资助项目(60873196) (60873196)

中央高校基本科研业务费专项资金资助项目(QN2009092) (QN2009092)

计算机应用研究

OA北大核心CSCDCSTPCD

1001-3695

访问量0
|
下载量0
段落导航相关论文