| 注册
首页|期刊导航|计算机应用研究|基于KGMM改进的动态目标检测算法

基于KGMM改进的动态目标检测算法

郭春凤 何建农

计算机应用研究2012,Vol.29Issue(8):3189-3191,3.
计算机应用研究2012,Vol.29Issue(8):3189-3191,3.DOI:10.3969/j.issn.1001-3695.2012.08.104

基于KGMM改进的动态目标检测算法

Improved dynamic target detection algorithm based on KGMM

郭春凤 1何建农1

作者信息

  • 1. 福州大学数学与计算机科学学院数学系,福州350002
  • 折叠

摘要

Abstract

The online K-means clustering method for initialization Gaussian mixture model (KGMM) with respect to run time, space complexity and noise have some disadvantages, this paper proposed an improved method of detection based on KGMM, added the variance factor to the C-means clustering criterion to initialize Gaussian mixture model. It effectively solved the problem that a pixel value may belong to different distribution classes driving different probabilities, and improved the flexibility of detection; improved the matching criterion of Gaussian model and increased the accuracy of the detection algorithm; established mixed Gaussian distribution for every other pixel point, it reduced the amount of Gaussian model, saved storage space, and reduced the running time of the algorithm. The experimental results show that the effect of the improved detection algorithm is more ideal.

关键词

混合高斯模型/C-均值聚类/动态目标检测

Key words

Gaussian mixture model/C-means cluster/dynamic object detecting

分类

信息技术与安全科学

引用本文复制引用

郭春凤,何建农..基于KGMM改进的动态目标检测算法[J].计算机应用研究,2012,29(8):3189-3191,3.

基金项目

国家自然科学基金资助项目(50877010) (50877010)

计算机应用研究

OA北大核心CSCDCSTPCD

1001-3695

访问量0
|
下载量0
段落导航相关论文