| 注册
首页|期刊导航|数学杂志|圆周上带希尔伯特核的柯西奇异积分方程的数值解

圆周上带希尔伯特核的柯西奇异积分方程的数值解

刘扬 宋兵

数学杂志2012,Vol.32Issue(4):582-588,7.
数学杂志2012,Vol.32Issue(4):582-588,7.

圆周上带希尔伯特核的柯西奇异积分方程的数值解

NUMERICAL SOLUTION OF CAUCHY SINGULAR INTEGRAL EQUATIONS WITH HILBERT KERNEL ON THE CIRCLE

刘扬 1宋兵2

作者信息

  • 1. 武汉大学数学与统计学院,湖北武汉430072
  • 2. 武汉理工大学理学院,湖北武汉430070
  • 折叠

摘要

Abstract

In this paper,we first investigate the composite trapezoidal rule for the evaluation of Cauchy principle value integral with Hilbert kernel on a circle.By using continuous piecewise linear function to approximate density function,we get the error estimation of numerical integral.Then we apply the rule to construct two schemes for solving the relevant singular integral equation.Some numerical experiments are presented to confirm the theoretical analysis at last.

关键词

Hilbert变换/奇异积分方程/Cauchy主值积分/配置法

Key words

Hilbert transform/ singular integral equation/ Cauchy principal value integral/collocation method

分类

数理科学

引用本文复制引用

刘扬,宋兵..圆周上带希尔伯特核的柯西奇异积分方程的数值解[J].数学杂志,2012,32(4):582-588,7.

基金项目

Supported by National Natural Science Foundation of China (10671182) (10671182)

the Fundamental Research Funds for the Central Universities (2011-la-012). (2011-la-012)

数学杂志

OA北大核心CSCDCSTPCD

0255-7797

访问量0
|
下载量0
段落导航相关论文