西安理工大学学报2012,Vol.28Issue(2):240-246,7.
基于分形理论的城市群最优空间结构模型与应用
An Optimal Spatial Structure Model of Urban Agglomeration and Its Application Based on Fractal Theory
摘要
Abstract
The fractal dimension is used to connect the spatial structure features of urban agglomeration with the incomes and losses of urban agglomeration to establish the optimal spatial structure model of urban agglomeration characterized by multi-element spatial distribution including the inputs outputs and population scales, etc. So as to make clear the economic connotations of the optimal spatial structure model of urban agglomeration. With Guanzhong urban agglomeration in Shaanxi as the example, the contrast is made between the optimal fractal dimension and Zipf fractal dimension evolution trend on the basis of using the urban scale benefit comparison check model effectiveness. It has been found that the spatial structure optimization direction predicted by the model is in agreement with the optimization norms of Zipf dimension being equal to 1 of the spatial structure of urban agglomeration.关键词
城市群/最优空间结构模型/分形维数/关中Key words
urban agglomeration/ optimal spatial structure model/ fractal dimension/ Guanzhong分类
管理科学引用本文复制引用
赵璟,党兴华..基于分形理论的城市群最优空间结构模型与应用[J].西安理工大学学报,2012,28(2):240-246,7.基金项目
教育部人文社会科学基金资助项目(09YJCZH097) (09YJCZH097)
陕西省自然科学基金资助项目(2011JQ9002) (2011JQ9002)
陕西省软科学研究计划重点基金资助项目(2011KRZ05) (2011KRZ05)
陕西省教育厅科学研究基金资助项目(11JK0171) (11JK0171)
西安社会科学规划基金资助项目(12J33) (12J33)
西安理工大学教学改革基金资助项目(107-002J04). (107-002J04)