| 注册
首页|期刊导航|自动化学报|基于极大似然准则和最大期望算法的自适应UKF算法

基于极大似然准则和最大期望算法的自适应UKF算法

王璐 李光春 乔相伟 王兆龙 马涛

自动化学报2012,Vol.38Issue(7):1200-1210,11.
自动化学报2012,Vol.38Issue(7):1200-1210,11.DOI:10.3724/SP.J.1004.2012.01200

基于极大似然准则和最大期望算法的自适应UKF算法

An Adaptive UKF Algorithm Based on Maximum Likelihood Principle and Expectation Maximization Algorithm

王璐 1李光春 2乔相伟 1王兆龙 1马涛3

作者信息

  • 1. 哈尔滨工程大学自动化学院,哈尔滨150001
  • 2. 上海交通大学电子信息与电气工程学院,上海200240
  • 3. 西安航天精密机电研究所,西安710100
  • 折叠

摘要

Abstract

In order to solve the state estimation problem of nonlinear systems without knowing prior noise statistical characteristics, an adaptive unscented Kalman filter (UKF) based on the maximum likelihood principle and expectation maximization algorithm is proposed in this paper. In our algorithm, the maximum likelihood principle is used to find a log likelihood function with noise statistical characteristics. Then, the problem of noise estimation turns out to be maximizing the mean of the log likelihood function, which can be achieved by using the expectation maximization algorithm. Finally, the adaptive UKF algorithm with a suboptimal and recurred noise statistical estimator can be obtained. The simulation analysis shows that the proposed adaptive UKF algorithm can overcome the problem of filtering accuracy declination of traditional UKF used in nonlinear filtering without knowing prior noise statistical characteristics and that the algorithm can estimate the noise statistical parameters online.

关键词

非线性滤波/自适应UKF算法/噪声统计估计器/极大似然准则/最大期望算法

Key words

Nonlinear filtering, adaptive unscented Kalman filter (UKF) algorithm, noise statistical estimator, maximum likelihood principle, expectation maximization (EM) algorithm

引用本文复制引用

王璐,李光春,乔相伟,王兆龙,马涛..基于极大似然准则和最大期望算法的自适应UKF算法[J].自动化学报,2012,38(7):1200-1210,11.

基金项目

国际合作项目(2010DFR80140)资助 (2010DFR80140)

自动化学报

OA北大核心CSCDCSTPCD

0254-4156

访问量2
|
下载量0
段落导航相关论文