| 注册
首页|期刊导航|中国空间科学技术|基于改进核聚类算法的空间目标识别方法

基于改进核聚类算法的空间目标识别方法

王晓雪 杨永胜 敬忠良

中国空间科学技术2012,Vol.32Issue(2):35-42,8.
中国空间科学技术2012,Vol.32Issue(2):35-42,8.DOI:10.3780/j.issn.1000-758X.2012.02.006

基于改进核聚类算法的空间目标识别方法

Space Target Recognition Based on Improved Kernel FCM

王晓雪 1杨永胜 1敬忠良1

作者信息

  • 1. 上海交通大学航空航天学院,上海200240
  • 折叠

摘要

Abstract

A recognition system was presented to accomplish space target classification. Firstly, Image feature vectors were extracted according to invariant region moments, shape and image descriptors of space objects. And then, clustering algorithm is applied to the classify space target. An improved kernel clustering algorithm based on Voronoi distance was proposed which had a crisper membership function and was robust for noise and outliers. Experiments show that the improved kernel fuzzy clustering algorithm is more accurate and valid than that of the conventional methods.

关键词

图像识别/核聚类法/特征提取/空间目标

Key words

Image recognition/Kernel cluster method/Feature extraction/Space target

引用本文复制引用

王晓雪,杨永胜,敬忠良..基于改进核聚类算法的空间目标识别方法[J].中国空间科学技术,2012,32(2):35-42,8.

基金项目

国家863高科技计划(2009AA7043005,2010AA7043005)资助项目 (2009AA7043005,2010AA7043005)

中国空间科学技术

OA北大核心CSCDCSTPCD

1000-758X

访问量0
|
下载量0
段落导航相关论文