| 注册
首页|期刊导航|计算机工程与应用|基于MapReduce的Canopy-Kmeans改进算法

基于MapReduce的Canopy-Kmeans改进算法

毛典辉

计算机工程与应用2012,Vol.48Issue(27):22-26,68,6.
计算机工程与应用2012,Vol.48Issue(27):22-26,68,6.DOI:10.3778/j.issn.1002-8331.2012.27.005

基于MapReduce的Canopy-Kmeans改进算法

Improved Canopy-Kmeans algorithm based on MapReduce

毛典辉1

作者信息

  • 1. 北京工商大学计算机与信息工程学院,北京100048
  • 折叠

摘要

Abstract

In order to solve the problem that how to void random Canopy selection of Canopy-Kmeans algorithm, this paper introduces an improved algorithm based on the minimum and maximum principle and realizes processing massive data based on MapReduce framework. Meanwhile, the algorithm is carried out in massive Internet news aggregation. The experiments show that the strategy of Canopy selection based on the minimum and maximum principle has higher classification accuracy and noise immunity compared to random strategy.

关键词

Canopy-Kmeans算法/MapReduce/分布式聚类

Key words

Canopy-Kmeans/ MapReduce/ distributed aggregation

分类

信息技术与安全科学

引用本文复制引用

毛典辉..基于MapReduce的Canopy-Kmeans改进算法[J].计算机工程与应用,2012,48(27):22-26,68,6.

基金项目

国家自然科学基金(No.2009ZX05038-001) (No.2009ZX05038-001)

北京市属高等学校科学技术与研究生教育创新工程建设项目(No.PXM2012_014213_000037). (No.PXM2012_014213_000037)

计算机工程与应用

OACSCDCSTPCD

1002-8331

访问量0
|
下载量0
段落导航相关论文