| 注册
首页|期刊导航|计算机工程与应用|结合DCT与KPCA的人脸识别

结合DCT与KPCA的人脸识别

刘嵩

计算机工程与应用2012,Vol.48Issue(27):186-188,205,4.
计算机工程与应用2012,Vol.48Issue(27):186-188,205,4.DOI:10.3778/j.issn.1002-8331.2012.27.039

结合DCT与KPCA的人脸识别

Face recognition based on DCT and KPCA

刘嵩1

作者信息

  • 1. 湖北民族学院信息工程学院,湖北恩施445000;华中师范大学物理科学与技术学院,武汉430079
  • 折叠

摘要

Abstract

As the nonlinear extensions of Principal Component Analysis (PCA), Kernel Principal Component Analysis (KPCA) is effective for face recognition. In order to reduce recognition time, a face recognition method based on Discrete Cosine Transform (DCT) and KPCA is presented. The feature coefficients are extracted by DCT, and part of the coefficients are chosen to reconstruct face images. The face feature of high dimention is extracted by KPCA. The nearest neighbor classifier is used for identification. The experiment result on ORL face databases shows this method has the property of being faster, and the comprehensive performance is better than that of KPCA. Face recognition; feature extract; Kernel Principle Component Analysis (KPCA); Discrete Cosine

关键词

人脸识别/特征提取/核主成分分析/离散余弦变换/最近邻分类器

Key words

Transform (DCT)/ nearest neighbor classifier

分类

信息技术与安全科学

引用本文复制引用

刘嵩..结合DCT与KPCA的人脸识别[J].计算机工程与应用,2012,48(27):186-188,205,4.

基金项目

湖北省自然科学基金(No.2009CDB069). (No.2009CDB069)

计算机工程与应用

OACSCDCSTPCD

1002-8331

访问量0
|
下载量0
段落导航相关论文