计算力学学报2012,Vol.29Issue(5):662-667,6.
具有大量椭圆随机分布区域的数值模拟及应用
Numerical simulation method for the domain with large number of random ellipse grains and their application
摘要
Abstract
Based on parameter equation of the ellipse.Firstly,the discrimination method for a point in and out the ellipse plane is given,and then the problem of calculating distance between the point and the elliptic is converted into a problem of seeking the minimum,so effective approximate solution can be gotten quickly by the search method.Thus,a new generation method for the domain with a large number of random ellipses is obtained,the basic idea is:(1) For the points randomly generated within the region,first,to determine whether the point is external to the generated ellipse,if so,to calculate the distance for it with all the boundary of generated ellipse; (2) If the distance is greater than or equal to the long axle of the wanted ellipse,then to build a new ellipse with that point as the center.In this way,there is no need to determine whether intersection or overlap between the ellipses with polygon covering,then the distance between the ellipse can be smaller (even zero),thereby increasing the density of elliptise in the simulated region.Test showed that for concrete,in a relatively short period of time,according to three grading that can generate aggregate content up to 70% of the simulated specimens,according to two grading that can generate aggregate content up to 60% of the simulated specimen.Finally,we made a simple mechanical loading experiments for the concrete specimens; the results show that the model generated by the method can meet the mechanical analysis.Further,based on the domain with large numbers of random ellipse,the parameterized irregularly aggregate mode with high content is given by the elliptical covering.关键词
多相复合材料/数值模拟/混凝土试件/级配/随机分布区域Key words
multi-phase composite material numerical simulation concrete specimens grading random distribution area分类
天文与地球科学引用本文复制引用
宋来忠,王乾峰,彭刚,姜袁..具有大量椭圆随机分布区域的数值模拟及应用[J].计算力学学报,2012,29(5):662-667,6.基金项目
国家自然科学基金(11171181)资助项目. ()