| 注册
首页|期刊导航|物理学报|一类高维相对转动非线性动力系统的Lyapunov-Schmidt约化与奇异性分析

一类高维相对转动非线性动力系统的Lyapunov-Schmidt约化与奇异性分析

时培明 韩东颖 李纪召 蒋金水 刘彬

物理学报2012,Vol.61Issue(19):267-274,8.
物理学报2012,Vol.61Issue(19):267-274,8.

一类高维相对转动非线性动力系统的Lyapunov-Schmidt约化与奇异性分析

Lyapunov-Schmidt reduction and singularity analysis of a high-dimensional relative-rotation nonlinear dynamical system

时培明 1韩东颖 2李纪召 1蒋金水 1刘彬1

作者信息

  • 1. 燕山大学电气工程学院,秦皇岛066004
  • 2. 燕山大学车辆与能源学院,秦皇岛066004
  • 折叠

摘要

Abstract

The dimensionality reduction and bifurcation of some high-dimensional relative-rotation nonlinear dynamical system are stud- ied. Considering the nonlinear influence factor of a relative-rotation nonlinear dynamic system, the high-dimensional relative-rotation torsional vibration global dynamical equation is established based on Lagrange equation. The equivalent low-dimensional bifurcation equation, which can reveal the low-dimensional equivalent bifurcation equation between the nonlinear dynamics and parameters, can be obtained by reducing the dimensionality system using the method of Lyapunov-Schmidt reduction. On this basis, the bifurcation characteristic is analyzed by taking universal unfolding on the bifurcation equation through using the singularity theory. The simulation is carded out with actual parameters. The parameter region of torsional vibration and the effect of the parameters on the vibration are discussed.

关键词

相对转动/高维系统/LS约化/奇异性

Key words

relatively rotation/high-dimensional system/L-S reduction/singularity

分类

数理科学

引用本文复制引用

时培明,韩东颖,李纪召,蒋金水,刘彬..一类高维相对转动非线性动力系统的Lyapunov-Schmidt约化与奇异性分析[J].物理学报,2012,61(19):267-274,8.

基金项目

国家自然科学基金(批准号:51005196)和河北省自然科学基金(批准号:F2010001317)资助的课题. ()

物理学报

OA北大核心CSCDCSTPCDSCI

1000-3290

访问量0
|
下载量0
段落导航相关论文