| 注册
首页|期刊导航|中山大学学报(自然科学版)|基于稀疏贝叶斯模型的视频恢复方法研究

基于稀疏贝叶斯模型的视频恢复方法研究

朱立

中山大学学报(自然科学版)2012,Vol.51Issue(5):36-39,4.
中山大学学报(自然科学版)2012,Vol.51Issue(5):36-39,4.

基于稀疏贝叶斯模型的视频恢复方法研究

Video Retrieval Method Using Sparse Bayesian Modeling

朱立1

作者信息

  • 1. 广东技术师范学院工业实训中心,广东广州510665
  • 折叠

摘要

Abstract

Combining Compressed Sensing sparse theory with Bayesian modeling , a faster and more effective method of video information retrieval is proposed in database. Based on minimizing l1 principle for classification and feature extraction , the method implements video retrieval requirement by utilizing Bayesian modeling to automatically estimate the regularization parameters. Experimental results demonstrate that the proposed method performs better retrieval performances than PCA and RP algorithm.

关键词

稀疏/贝叶斯模型/压缩感知/视频恢复

Key words

sparse/ Bayesian modeling/ compressed sensing/ video retrieval

分类

电子信息工程

引用本文复制引用

朱立..基于稀疏贝叶斯模型的视频恢复方法研究[J].中山大学学报(自然科学版),2012,51(5):36-39,4.

基金项目

国家自然科学基金资助项目(90604008) (90604008)

广东省科技计划资助项目(2012B010100035) (2012B010100035)

广东省高等学校人才引进项目 ()

中山大学学报(自然科学版)

OA北大核心CSCDCSTPCD

0529-6579

访问量0
|
下载量0
段落导航相关论文