| 注册
首页|期刊导航|东南大学学报(自然科学版)|K2与模拟退火相结合的贝叶斯网络结构学习

K2与模拟退火相结合的贝叶斯网络结构学习

金焱 胡云安 张瑾 黄隽

东南大学学报(自然科学版)2012,Vol.42Issue(z1):82-86,5.
东南大学学报(自然科学版)2012,Vol.42Issue(z1):82-86,5.DOI:10.3969/j.issn.1001-0505.2012.S1.018

K2与模拟退火相结合的贝叶斯网络结构学习

Bayesian network structure learning combining K2 with simulated annealing

金焱 1胡云安 1张瑾 2黄隽3

作者信息

  • 1. 海军航空工程学院控制工程系,烟台264001
  • 2. 中国人民解放军91213部队装备部,烟台264007
  • 3. 海军航空工程学院指挥系,烟台264001
  • 折叠

摘要

Abstract

Aiming at the problem that the Bayesian network structure learning algorithm based on simulated annealing usually cannot obtain the optimal network structure due to the fact that the ability of the model perturbation to pass through all over the model space is poor, an improved Bayesian network structure learning algorithm, K2SA, is presented combining K2 with simulated annealing. With the new nodes order generated by exchanging two nodes selected randomly among the present nodes order, the K2SA uses the K2 algorithm to learn a Bayesian network as a new state in the simulated annealing algorithm in order to improve the ability of the model to perturb globally. The algorithm records the optimal network structure obtained in the course of simulated annealing, which is optimized by the hill-climbing algorithm after the course of simulated annealing. The simulation results show that under the condition of sufficient samples, the K2SA can obtain an approximately globally optimal network structure, but its efficiency is a little poor.

关键词

模拟退火/K2算法/模型扰动/贝叶斯网络/结构学习/节点序

Key words

simulated annealing/ K2 algorithm/ model perturbation/ Bayesian networks/ structure learning/ nodes order

分类

信息技术与安全科学

引用本文复制引用

金焱,胡云安,张瑾,黄隽..K2与模拟退火相结合的贝叶斯网络结构学习[J].东南大学学报(自然科学版),2012,42(z1):82-86,5.

基金项目

军队科研基金资助项目. ()

东南大学学报(自然科学版)

OA北大核心CSCDCSTPCD

1001-0505

访问量0
|
下载量0
段落导航相关论文