| 注册
首页|期刊导航|工业工程|基于粒子群BP神经网络的质量预测模型

基于粒子群BP神经网络的质量预测模型

徐兰 方志耕 刘思峰

工业工程2012,Vol.15Issue(4):17-20,27,5.
工业工程2012,Vol.15Issue(4):17-20,27,5.DOI:10.3969/j.issn.1007-7375.2012.04.004

基于粒子群BP神经网络的质量预测模型

Quality Prediction Model by Using PSO-BP Neural Network

徐兰 1方志耕 2刘思峰1

作者信息

  • 1. 南京航空航天大学经济与管理学院,江苏南京210016
  • 2. 江苏科技大学经济管理学院,江苏镇江212003
  • 折叠

摘要

Abstract

For quality assurance, it is very important to make effective quality prediction in the stage of product design and parameter optimization. To do so, by using PSO (particle swarm optimization) and BP (back propagation) neural network, a quality prediction model is established. It is an optimization problem with grey incidence degree between the network's output and input as objective. PSO algorithm is used to optimize the BP neural network's weight coefficient and threshold value. Then, a PSO-GRG ( grey relational grade) algorithm is proposed to solve the problem. This algorithm overcomes general BP algorithm's shortcomings of slow convergence and local optimum solution. A case problem of injection molding is used to verify the proposed method. Simulation results show that the prediction errors are significantly reduced with the number of iterations being reduced by 87. 5%.

关键词

粒子群算法/BP神经网络/质量预测/灰色关联度

Key words

particle swarm optimization (PSO) algorithm/ back propagation(BP) neural network/ quality prediction/ grey relational grade

分类

管理科学

引用本文复制引用

徐兰,方志耕,刘思峰..基于粒子群BP神经网络的质量预测模型[J].工业工程,2012,15(4):17-20,27,5.

基金项目

国家自然科学青年基金资助项目(71002046) (71002046)

江苏省教育厅高校哲学社会科学研究基金资助项目(2012SJB630017) (2012SJB630017)

工业工程

OA北大核心CHSSCDCSTPCD

1007-7375

访问量0
|
下载量0
段落导航相关论文