| 注册
首页|期刊导航|工业工程|基于自适应粒子群算法和支持向量机的控制图模式识别

基于自适应粒子群算法和支持向量机的控制图模式识别

张敏 程文明

工业工程2012,Vol.15Issue(5):125-129,5.
工业工程2012,Vol.15Issue(5):125-129,5.DOI:10.3969/j.issn.1007-7375.2012.05.021

基于自适应粒子群算法和支持向量机的控制图模式识别

Recognition of Control Chart Pattern by Using Adaptive Mutation Particle Swarm Optimization and Support Vector Machine

张敏 1程文明1

作者信息

  • 1. 西南交通大学机械工程研究所,四川成都610031
  • 折叠

摘要

Abstract

Due to the complexity of production processes resulting from multi -item production, effective production control is necessary. For this purpose, an intelligent control chart pattern recognition method is proposed. This method can improve the recognition accuracy by using adaptive mutation particle swarm optimization (AMPSO ) and support vector machine ( SVM) classifier. It uses one - against - one SVM multi - class classifier to recognize the control patterns because of its excellent small sample learning- Meanwhile, AMPSO is used to optimize the parameters of SVM kernel function. 20 - dimension simulated data sets of ten control chart patterns, including six fundamental patterns and four mix patterns, are used to test the proposed method. Also, it is compared with BP, SVM, and PSO - SVM methods. Simulation results show that the proposed method can get high recognition accuracy, which is up to 98.14% , while it is 75% if BP is applied. This implies that it is a feasible way to recognize control chart pattern in practice.

关键词

控制图/模式识别/支持向量机/粒子群

Key words

control chart/ pattern recognition/ support vector machine/ particle swarm optimization

分类

机械制造

引用本文复制引用

张敏,程文明..基于自适应粒子群算法和支持向量机的控制图模式识别[J].工业工程,2012,15(5):125-129,5.

基金项目

中央高校基本科研业务费专项资金专题研究项目(2010ZT03) (2010ZT03)

国家自然科学基金资助项目(51175442) (51175442)

工业工程

OA北大核心CHSSCDCSTPCD

1007-7375

访问量0
|
下载量0
段落导航相关论文