| 注册
首页|期刊导航|计算机工程与应用|基于改进极限学习机的软测量建模方法

基于改进极限学习机的软测量建模方法

张东娟 丁煜函 刘国海 梅从立

计算机工程与应用2012,Vol.48Issue(20):51-54,4.
计算机工程与应用2012,Vol.48Issue(20):51-54,4.DOI:10.3778/j.issn.1002-8331.2012.20.010

基于改进极限学习机的软测量建模方法

Soft sensor modeling based on improved extreme learning machine algorithm

张东娟 1丁煜函 1刘国海 1梅从立1

作者信息

  • 1. 江苏大学电气信息工程学院自动化系,江苏镇江212013
  • 折叠

摘要

Abstract

To solve the problem that biomass concentration is difficult to measure directly in the fermentation process, a soft sensor modeling method based on Improved Extreme Learning Machine (IELM) is proposed. The least squares method is combined with the ELM algorithm to calculate the optimal learning parameters. And the training error is used as feedback input to improve the stability and prediction of ELM. In order to further improve the stability of the model, the Lanczos Bidiagonalization(LBD) is used to calculate the output weights. The proposed modeling method is used to construct a novel soft sensor model for the erythromycin fermentation process. Compared with ELM^IRLS-ELM and PL-ELM model, IELM model has higher prediction accuracy and stronger generalization capability.

关键词

极限学习机/软测量/双对角化/发酵过程

Key words

extreme learning machine/ soft sensor/ Lanczos bidiagonalization/ fermentation process

分类

信息技术与安全科学

引用本文复制引用

张东娟,丁煜函,刘国海,梅从立..基于改进极限学习机的软测量建模方法[J].计算机工程与应用,2012,48(20):51-54,4.

基金项目

国家高技术研究发展计划(863) (No.2007AA04Z179) (863)

中国博士后科学基金(No.20110491359). (No.20110491359)

计算机工程与应用

OACSCDCSTPCD

1002-8331

访问量3
|
下载量0
段落导航相关论文