| 注册
首页|期刊导航|计算机工程与应用|不完备数据下的免疫分类算法

不完备数据下的免疫分类算法

舒才良 严宣辉 曾庆盛

计算机工程与应用2012,Vol.48Issue(20):172-176,5.
计算机工程与应用2012,Vol.48Issue(20):172-176,5.DOI:10.3778/j.issn.1002-8331.2012.20.036

不完备数据下的免疫分类算法

Immune classification algorithm under incomplete data

舒才良 1严宣辉 1曾庆盛1

作者信息

  • 1. 福建师范大学数学与计算机科学学院,福州350007
  • 折叠

摘要

Abstract

Artificial Immune Recognition System (AIRS) that is inspired by natural immune system has been developed as an efficient classifier. But the number of memory cells is too large and the accuracy of AIRS is not high, especially in the case of incomplete data. To solve the problem, this paper presents Immune Classification Algorithm Under (ICAU) incomplete data. It introduces semi-supervised learning, classifier fusion and vote to decision ideas, uses multiple AIRS classifiers to learn to refine each other. In the UCI data sets, experimental results prove the validity of the ICAU algorithm.

关键词

人工免疫系统/不完备数据/分类

Key words

artificial immune/ incomplete data/ classification

分类

信息技术与安全科学

引用本文复制引用

舒才良,严宣辉,曾庆盛..不完备数据下的免疫分类算法[J].计算机工程与应用,2012,48(20):172-176,5.

基金项目

福建省高校科研专项重点项目(No.JK2009006) (No.JK2009006)

福建省高校服务海西建设重点项目. ()

计算机工程与应用

OACSCDCSTPCD

1002-8331

访问量0
|
下载量0
段落导航相关论文