| 注册
首页|期刊导航|计算机工程与应用|一种用于非平衡数据分类的集成学习模型

一种用于非平衡数据分类的集成学习模型

焦盛岚 杨炳儒 翟云 赵万里

计算机工程与应用2012,Vol.48Issue(29):119-123,219,6.
计算机工程与应用2012,Vol.48Issue(29):119-123,219,6.DOI:10.3778/j.issn.1002-8331.2012.29.024

一种用于非平衡数据分类的集成学习模型

Ensemble learning model for imbalanced data classification

焦盛岚 1杨炳儒 1翟云 1赵万里1

作者信息

  • 1. 北京科技大学计算机与通信工程学院,北京100083
  • 折叠

摘要

Abstract

For the issue of classification on imbalanced datasets, this paper presents an improved SVM-KNN classification algorithm. On this basis, an ensemble learning model is proposed. This model employs limited sampling to segment the majority class samples, re-combines the subset of majority class samples with the minority class samples, obtains several basic classifiers by training the combined subset based on improved SVM-KNN. These basic classifiers are integrated. Experimental results on UCI dataset show that this ensemble learning model has satisfactory performance when dealing with issue of classification on imbalanced datasets.

关键词

非平衡数据/集成学习模型/基本分类器/改进的支持向量机-K最近邻(SVM-KNN)/UCI数据集

Key words

imbalanced data/ ensemble learning model/ basic classifier/ improved Support Vector Machine-K Nearest Neighbor (SVM-KNN)/ UCI dataset

分类

信息技术与安全科学

引用本文复制引用

焦盛岚,杨炳儒,翟云,赵万里..一种用于非平衡数据分类的集成学习模型[J].计算机工程与应用,2012,48(29):119-123,219,6.

基金项目

国家自然科学基金(No.61175048). (No.61175048)

计算机工程与应用

OACSCDCSTPCD

1002-8331

访问量0
|
下载量0
段落导航相关论文