| 注册
首页|期刊导航|计算机工程与应用|基于多重核学习支持向量机短期负荷预测研究

基于多重核学习支持向量机短期负荷预测研究

孔强 姚建刚 汪梦健 孙谦 毛田 康童

计算机工程与应用2012,Vol.48Issue(33):207-211,5.
计算机工程与应用2012,Vol.48Issue(33):207-211,5.DOI:10.3778/j.issn.1002-8331.1207-0260

基于多重核学习支持向量机短期负荷预测研究

Study of short-term load forecasting based on multi-kernel Support Vector Machine learning

孔强 1姚建刚 1汪梦健 2孙谦 3毛田 3康童3

作者信息

  • 1. 湖南大学电气与信息工程学院,长沙410082
  • 2. 常德石门电力局,湖南常德415300
  • 3. 湖南湖大华龙电气与信息技术有限公司,长沙410082
  • 折叠

摘要

Abstract

In recent years, the SVM method in load forecasting application research has become the hot spot. This paper in view of the traditional standard support vector machine method in the prediction of time and prediction accuracy of deficiencies, firstly applies the MKL in power system short-term load forecasting field. The algorithm is realized through solving quadratic constrained programmer in the hybrid kernel space. Compared with the standard support vector regression algorithm, this method not only can improve the prediction performance, but also can reduce the number of support vectors. The practical example shows that, the method can effectively improve the prediction accuracy, shorten the prediction time, and with good generalization performance.

关键词

短期负荷预测/多重核学习/支持向量机/核函数

Key words

short-term load forecasting/ multi-kernel learning/ Support Vector Machines (SVM)/ kernel function

分类

信息技术与安全科学

引用本文复制引用

孔强,姚建刚,汪梦健,孙谦,毛田,康童..基于多重核学习支持向量机短期负荷预测研究[J].计算机工程与应用,2012,48(33):207-211,5.

计算机工程与应用

OACSCDCSTPCD

1002-8331

访问量0
|
下载量0
段落导航相关论文