| 注册
首页|期刊导航|计算机工程与应用|基于图正则化的半监督非负矩阵分解

基于图正则化的半监督非负矩阵分解

杜世强 石玉清 王维兰 马明

计算机工程与应用2012,Vol.48Issue(36):194-200,7.
计算机工程与应用2012,Vol.48Issue(36):194-200,7.DOI:10.3778/j.issn.1002-8331.1205-0357

基于图正则化的半监督非负矩阵分解

Graph regularized-based semi-supervised non-negative matrix factorization

杜世强 1石玉清 2王维兰 1马明1

作者信息

  • 1. 西北民族大学数学与计算机科学学院,兰州730030
  • 2. 西北民族大学电气工程学院,兰州730030
  • 折叠

摘要

Abstract

This paper presents a novel algorithm called Graph regularized-based Semi-supervised NMF(GSNMF). It overcomes the shortcomings which ignore the geometric structure and the label information of the data for Non-negative Matrix Factorization(NMF), Constrained NMF(CNMF) and Graphed regularized NMF(GNMF). Moreover, those algorithms are special case of GSNMF. The convergence proof of this algorithm is provided. GSNMF preserves the intrinsic geometry of data and uses the label information as semi-supervised learning. It makes nearby samples with the same class-label more compact, and nearby classes separated. Compared with NMF, LNMF, PNMF, GNMF and CNMF, experiment results on ORL face database, FERET face database and USPS handwrite database have shown that the proposed method achieves better clustering results.

关键词

图像聚类/半监督学习/非负矩阵分解/图正则化

Key words

image clustering/ semi-supervised learning/ Non-negative Matrix Factorization(NMF)/ graph regularized

分类

信息技术与安全科学

引用本文复制引用

杜世强,石玉清,王维兰,马明..基于图正则化的半监督非负矩阵分解[J].计算机工程与应用,2012,48(36):194-200,7.

基金项目

国家自然科学基金(No.61162021) (No.61162021)

西北民族大学中青年科研基金(No.12xb30) (No.12xb30)

西北民族大学科研创新团队计划. ()

计算机工程与应用

OACSCDCSTPCD

1002-8331

访问量0
|
下载量0
段落导航相关论文