| 注册
首页|期刊导航|计算机与数字工程|基于TDOA测量的多目标P-GMPHD跟踪算法

基于TDOA测量的多目标P-GMPHD跟踪算法

徐志军 苗秀梅 吴鑫辉

计算机与数字工程2012,Vol.40Issue(9):12-15,4.
计算机与数字工程2012,Vol.40Issue(9):12-15,4.

基于TDOA测量的多目标P-GMPHD跟踪算法

A New P-GMPHD Filter Algorithm for Multiple Target Localization Based on Passive Multilateral TDOAs

徐志军 1苗秀梅 2吴鑫辉3

作者信息

  • 1. 海军信息化部 北京100841
  • 2. 海军装备部 北京100841
  • 3. 海军工程大学电子工程学院 武汉430033
  • 折叠

摘要

Abstract

According to the traditional multi-target tracking based on TDOA being of higher computational, lower estimated accuracy, and the presence of association uncertainty, a novel pre-association Gaussian mixture probability hypothesis density filter (P-GMPHD) is proposed. The approach involves modeling the targets and measurements as random finite sets and applying the Gaussian mixture to propa-gate the posterior density, which could avoid the difficult problem of data association. To alleviate the computation of GMPHD, a pre-associ-ation method which eliminates false measurements is introduced. Simulation results show that the P-GMPHD algorithm could deal with un-known number of emitters under the complex environment with clutter. Moreover, without loses tracking accuracy,the algorithm presents lower tracking computation.

关键词

多目标跟踪/随机有限集/TDOA/P-GMPHD

Key words

multi-target tracking/random finite sets (RFS)/time difference of arrival (TDOA)/P-GMPHD

分类

信息技术与安全科学

引用本文复制引用

徐志军,苗秀梅,吴鑫辉..基于TDOA测量的多目标P-GMPHD跟踪算法[J].计算机与数字工程,2012,40(9):12-15,4.

基金项目

国家自然科学基金项目(编号:60901069),湖北省自然科学基金(编号:2009CDB031)资助. (编号:60901069)

计算机与数字工程

1672-9722

访问量0
|
下载量0
段落导航相关论文