自动化学报2012,Vol.38Issue(9):1485-1495,11.DOI:10.3724/SP.J.1004.2012.01485
张量局部Fisher判别分析的人脸识别
Face Recognition Using Tensor Local Fisher Discriminant Analysis
摘要
Abstract
One of the key issues of face recognition is to extract the subspace features of face images. A new subspace dimensionality reduction method is proposed named as tensor local Fisher discriminant analysis (TLFDA), which benefits from two techniques, i.e; tensor based method and local Fisher discriminant analysis. Firstly, local Fisher discriminant analysis is improved for better recognition performance and reduced time complexity. Secondly, tensor based method employs two-sided transformation rather than single-sided one, and yields a higher compression ratio. Finally, TLFDA uses an iterative procedure to calculate the optimal solution of two transformation matrices. Experiment results on the ORL and PIE face databases show the effectiveness of the proposed method.关键词
人脸识别/Fisher判别分析/维数约简/局部结构保持/判别信息Key words
Face recognition, Fisher discriminant analysis, dimensionality reduction, local structure preservation, discriminant information引用本文复制引用
郑建炜,王万良,姚晓敏,石海燕..张量局部Fisher判别分析的人脸识别[J].自动化学报,2012,38(9):1485-1495,11.基金项目
国家自然科学基金(61070043),浙江工业大学自然科学基金(2011XY020)资助 (61070043)