| 注册
首页|期刊导航|自动化学报|二维投影非负矩阵分解算法及其在人脸识别中的应用

二维投影非负矩阵分解算法及其在人脸识别中的应用

方蔚涛 马鹏 成正斌 杨丹 张小洪

自动化学报2012,Vol.38Issue(9):1503-1512,10.
自动化学报2012,Vol.38Issue(9):1503-1512,10.DOI:10.3724/SP.J.1004.2012.01503

二维投影非负矩阵分解算法及其在人脸识别中的应用

2-dimensional Projective Non-negative Matrix Factorization and Its Application to Face Recognition

方蔚涛 1马鹏 2成正斌 3杨丹 3张小洪3

作者信息

  • 1. 重庆大学计算机学院 重庆400030
  • 2. 重庆大学数学与统计学院 重庆401331
  • 3. 重庆大学软件学院 重庆401331
  • 折叠

摘要

Abstract

Face recognition algorithms through minimizing the loss function of non-negative matrix factorization must simultaneously calculate the base matrix and the coefficient matrix, which leads to the high computational complexity. This paper introduces the non-negative properties into 2-dimensional principal component analysis (2DPCA), and then proposes a novel 2-dimensional projective non-negative matrix factorization (2DPNMF) for face recognition. 2DPNMF preserves the local structure of face images but breaks through the restriction of minimizing the loss function of non-negative matrix factorization. Since 2DPNMF onfy needs calculating the projection matrix (base matrix), its computational complexity is greatly reduced. This paper theoretically proves the convergence of the proposed algorithm and uses YALE face database, FERET face database, and AR face database for the comparison experiments. Experimental results show that 2DPNMF has higher recognition performance as well as a much faster speed than NMF and 2DPCA.

关键词

二维主成分分析/非负矩阵分解/人脸识别/特征提取

Key words

2-dimensional principal component analysis (2DPCA), non-negative matrix factorization (NMF), face recognition, feature extraction

引用本文复制引用

方蔚涛,马鹏,成正斌,杨丹,张小洪..二维投影非负矩阵分解算法及其在人脸识别中的应用[J].自动化学报,2012,38(9):1503-1512,10.

基金项目

国家自然科学基金(60975015,61173131),重庆市科技攻关重点项目(CSTC2009AB2230),重庆市攻关项目(2009AC2057)资助 (60975015,61173131)

自动化学报

OA北大核心CSCDCSTPCD

0254-4156

访问量0
|
下载量0
段落导航相关论文