| 注册
首页|期刊导航|传感技术学报|改进型BP神经网络对电容称重传感器的非线性校正

改进型BP神经网络对电容称重传感器的非线性校正

郭伟 张栋 李巨韬 王磊

传感技术学报2012,Vol.25Issue(10):1354-1360,7.
传感技术学报2012,Vol.25Issue(10):1354-1360,7.DOI:10.3969/j.issn.1004-1699.2012.010.006

改进型BP神经网络对电容称重传感器的非线性校正

Nonlinear Calibration of Capacitance Weighing Sensor with Improved BP Neural Network Model

郭伟 1张栋 1李巨韬 1王磊1

作者信息

  • 1. 天津大学机构理论与装备设计教育部重点实验室,天津300072
  • 折叠

摘要

Abstract

Considering characteristics of the nonlineanty of the capacitance weighing sensor, i. e. the nonlinear relationship between the output voltage of the sensor and the loading, an improved BP neural network based on the Levenberg-Marquardt algorithm of Bayesian-Regularization was established to improve the nonlinear calibration capabilities. Simulation results show that the improved BP neural network achieved faster rate of convergence, higher accuracy and stronger generalization capability in comparison with the traditional gradient descent algorithm, which can effectively upgrade the nonlinear calibration of the capacitance weighing sensor.

关键词

电容称重传感器/非线性校正/贝叶斯正则化/Levenberg-Marquardt算法/梯度下降算法

Key words

capacitance weighing sensor/ nonlinear calibration/ Bayesian regularization/ Levenberg-Marquardt algorithm/ Gradient descent algorithm

分类

信息技术与安全科学

引用本文复制引用

郭伟,张栋,李巨韬,王磊..改进型BP神经网络对电容称重传感器的非线性校正[J].传感技术学报,2012,25(10):1354-1360,7.

基金项目

青年科学基金项目(51005162) (51005162)

国家863计划项目(2011AA040601) (2011AA040601)

传感技术学报

OA北大核心CSCDCSTPCD

1004-1699

访问量0
|
下载量0
段落导航相关论文