| 注册
首页|期刊导航|测井技术|基于改进SADE算法的神经网络预测储层物性

基于改进SADE算法的神经网络预测储层物性

李虎 范宜仁 丛云海 胡云云 刘智中

测井技术2012,Vol.36Issue(6):585-589,5.
测井技术2012,Vol.36Issue(6):585-589,5.

基于改进SADE算法的神经网络预测储层物性

A New Method Predicting Reservoir Properties with Neural Network Based on SADE Algorithm

李虎 1范宜仁 2丛云海 1胡云云 2刘智中1

作者信息

  • 1. 中国石油大学地球资源与信息学院,山东青岛266580
  • 2. 中国石油大学CNPC测井重点实验室,山东青岛266580
  • 折叠

摘要

Abstract

order to accurately calculate reservoir properties, the improved Simulated Annealing Differential Evolution Algorithm (SADE) is proposed by combining simulated annaling with differential evolution algorithm. The training of neural network weights in the process of predicting complicated reservoir properties is transformed into an unconstrained optimization problem, and also a new objective function is offered. Then this problem can be solved by SADE algorithm. Compared with other traditional methods, the new objective function is independent of the desired output during the training of neural network, and thus is more suitable for large range of sample data. At the same time, the annealing temperature is used in the algorithm to control the selection process of differential evolution and the differential strategy. In the early stage, the algorithm is of good diversity, while in the late stage, it is of good convergence, overcoming the shortcoming of prematurity in the classical algorithm, and improving the general search ability and robustness. Finally we calculate the field reservoir properties with this algorithm, and obtain good effect.

关键词

测井评价/模拟退火/差分进化/神经网络/目标函数/储层物性预测

Key words

log evaluation, simulated annealing, differential evolution, neural network, objective function, reservoir properties prediction

分类

能源科技

引用本文复制引用

李虎,范宜仁,丛云海,胡云云,刘智中..基于改进SADE算法的神经网络预测储层物性[J].测井技术,2012,36(6):585-589,5.

基金项目

中国石油天然气集团公司科学研究与技术开发项目(2011D-4101)、中国石油国家重大专项(2011ZX05020-008)、国家自然基金资助项目(41174099)联合资助 (2011D-4101)

测井技术

OA北大核心CSCDCSTPCD

1004-1338

访问量0
|
下载量0
段落导航相关论文