| 注册
首页|期刊导航|计算机工程与应用|集成学习算法的研究与应用

集成学习算法的研究与应用

侯勇 郑雪峰

计算机工程与应用2012,Vol.48Issue(34):17-22,6.
计算机工程与应用2012,Vol.48Issue(34):17-22,6.DOI:10.3778/j.issn.1002-8331.1203-0682

集成学习算法的研究与应用

Study of ensemble algorithm and its application

侯勇 1郑雪峰2

作者信息

  • 1. 北京科技大学计算机与通信工程学院,北京100083
  • 2. 山东经贸职业学院科学与人文学院,山东潍坊261011
  • 折叠

摘要

Abstract

The idea of ensemble learning is to employ multiple learners and combine their predictions. The typical methods of combining multiple models such as bagging, boosting, stacking error correcting output codes, voting, mixtures of experts, stacked generalization and cascading. Though a considerable effort has been put into developing statistical models and algorithmic strategies for classification, the accurate of the classification has been proven to be very challenging. A novel ensemble algorithm, ReinforcedEnsemble is proposed. ReinforcedEnsemble ensemble algorithm consists of two parts, ReinforcedEnsemble feature extraction algorithm and ReinforcedEnsemble base classifier. The performance between ReinforcedEnsemble and other ensemble algorithm in the experiments is compared. The experimental results show that the proposed algorithm is optimal in a number of indicators.

关键词

特征提取/最大间隔/多层感知器/集成算法/KDDCUP99数据集/入侵检测

Key words

feature extraction/ maximum margin/ multilayer perceptron/ assemble algorithm/ KDDCUP99 data set/ intrusion detection

分类

信息技术与安全科学

引用本文复制引用

侯勇,郑雪峰..集成学习算法的研究与应用[J].计算机工程与应用,2012,48(34):17-22,6.

计算机工程与应用

OACSCDCSTPCD

1002-8331

访问量4
|
下载量0
段落导航相关论文