| 注册
首页|期刊导航|计算机工程与应用|一种融合变异系数的k-mean聚类分析方法

一种融合变异系数的k-mean聚类分析方法

范阿琳 任树华

计算机工程与应用2012,Vol.48Issue(35):114-117,4.
计算机工程与应用2012,Vol.48Issue(35):114-117,4.DOI:10.3778/j.issn.1002-8331.1105-0630

一种融合变异系数的k-mean聚类分析方法

K-means clustering algorithm based on coefficient of variation

范阿琳 1任树华1

作者信息

  • 1. 大连工业大学信息科学与工程学院,辽宁大连116034
  • 折叠

摘要

Abstract

The performance of k-means clustering algorithm depends on the selection of distance metrics. The Euclid distance is commonly chosen as the similarity measure in k-means clustering algorithm, which treats all features equally and does not accurately reflect the dissimilarity among samples. K-means clustering algorithm based on Coefficient of Variation (CV-k-means) is proposed in this paper to solve this problem. The CV-k-means clustering algorithm uses variation coefficient weight vector to decrease the affects of irrelevant features. The experimental results show that the proposed algorithm can generate better clustering results than k-means algorithm.

关键词

k-means算法/相异性度量//变异系数

Key words

k-means clustering/ dissimilarity measure/ weighting/ coefficient of variation

分类

信息技术与安全科学

引用本文复制引用

范阿琳,任树华..一种融合变异系数的k-mean聚类分析方法[J].计算机工程与应用,2012,48(35):114-117,4.

计算机工程与应用

OACSCDCSTPCD

1002-8331

访问量0
|
下载量0
段落导航相关论文