| 注册

视觉相似性图像质量评价方法

崔力 陈玉坤 韩宇

西安电子科技大学学报(自然科学版)2012,Vol.39Issue(4):155-160,6.
西安电子科技大学学报(自然科学版)2012,Vol.39Issue(4):155-160,6.DOI:10.3969/j.issn.1001-2400.2012.04.028

视觉相似性图像质量评价方法

Visual similarity index for image quality assessment

崔力 1陈玉坤 2韩宇2

作者信息

  • 1. 西北工业大学电子信息工程学院,陕西西安710072
  • 2. 西安电于科技大学综合业务网理论及关键技术国家重点实验室,陕西西安710071
  • 折叠

摘要

Abstract

Low level features are widely used in computer vision for acquiring information from outside circumstance and responding to it. Considering that low level features provide a rich source of information about luminance distribution, object organization and foreground/background configuration, their difference reflects the structural change of images. Based on the fact that the human vision system always focuses on the local neighborhoods around gazing positions, similarity between corner and edge of images is estimated locally and combined into an image quality metric, namely low-level features based similarity measure (LFSIM). Extensive experiments based upon five publicly-available image databases with subjective ratings demonstrate that LFSIM performs much better than traditional peak signal noise ratio (PSNR) and structural similarity measure (SSIM), and is even competitive to the state-of-the art image quality assessment algorithms information fidelity criteria (IFC) and visual information fidelity (VIF), which are developed on the basis of natural scene statistics.

关键词

图像质量/人眼视觉感知/角点/边缘

Key words

image quality/ visual perception/corner/edge

分类

信息技术与安全科学

引用本文复制引用

崔力,陈玉坤,韩宇..视觉相似性图像质量评价方法[J].西安电子科技大学学报(自然科学版),2012,39(4):155-160,6.

基金项目

陕西省自然科学基金资助项目(3011JQ8038) (3011JQ8038)

人事部留学人员科技活动资助项目 ()

西北工业大学基础研究基金资助项目(JC201014) (JC201014)

西北工业大学E之星青年基金资助项目 ()

西安电子科技大学学报(自然科学版)

OA北大核心CSCDCSTPCD

1001-2400

访问量0
|
下载量0
段落导航相关论文