| 注册

类依赖增强线性判别分析算法

任获荣 李春晓 孙建维 秦红波 何培培 高敏

西安电子科技大学学报(自然科学版)2012,Vol.39Issue(5):96-101,167,7.
西安电子科技大学学报(自然科学版)2012,Vol.39Issue(5):96-101,167,7.DOI:10.3969/j.issn.1001-2400.2012.05.017

类依赖增强线性判别分析算法

Classification method for multimodal data-class dependent ELDA

任获荣 1李春晓 1孙建维 1秦红波 1何培培 1高敏1

作者信息

  • 1. 西安电子科技大学 机电工程学院,陕西 西安 710071
  • 折叠

摘要

Abstract

Multimodal data refer to the data of a class that can be divided into two or more clusters. This paper proposes an improved method which is called the class-dependent and enhanced method. Enhanced LDA is combined with class-dependent LDA (CDLDA) to classify the multimodal data. In the new algorithm, we first use Enhanced LDA to reduce the dimensionality of multimodal data without losing the local structure and then get a projection matrix for each data class to obtain the characteristic differences for different data class distribution by the maximum scatter difference discriminant analysis criterion. Experiments on the face databases show the encouraging recognition performance of the proposed algorithm.

关键词

多模态数据/分类/线性判别分析/增强线性判别分析/类依赖

Key words

multimodal data/ classification/ LDA/ enhanced LDA/ class-dependence

分类

信息技术与安全科学

引用本文复制引用

任获荣,李春晓,孙建维,秦红波,何培培,高敏..类依赖增强线性判别分析算法[J].西安电子科技大学学报(自然科学版),2012,39(5):96-101,167,7.

基金项目

中央高校基本科研业务费资助项目(K50510040013) (K50510040013)

西安电子科技大学学报(自然科学版)

OA北大核心CSCDCSTPCD

1001-2400

访问量3
|
下载量0
段落导航相关论文