| 注册
首页|期刊导航|信息与控制|基于动态贝叶斯网络的可分解信念状态空间压缩算法

基于动态贝叶斯网络的可分解信念状态空间压缩算法

仵博 吴敏 郑红燕 冯延蓬

信息与控制2012,Vol.41Issue(6):713-719,7.
信息与控制2012,Vol.41Issue(6):713-719,7.DOI:10.3724/SP.J.1219.2012.00713

基于动态贝叶斯网络的可分解信念状态空间压缩算法

Factored Belief States Space Compression Algorithm Based on Dynamic Bayesian Network

仵博 1吴敏 2郑红燕 3冯延蓬1

作者信息

  • 1. 中南大学信息科学与工程学院,湖南长沙410083
  • 2. 先进控制与智能自动化湖南省工程实验室,湖南长沙410083
  • 3. 深圳职业技术学院教育技术与信息中心,广东深圳518055
  • 折叠

摘要

Abstract

For the dimensionality curse problem of belief state space scale of partially observable Markov decision process (POMDP), a factored belief states space compression (FBSSC) algorithm based on dynamic Bayesian network (DBN) is proposed according to the decomposable features and dependent relationship of the belief state variables. Based on the building of the graph of dependent relationship among variables, the algorithm removes the redundant edges by detecting the dependent relationships, and decomposes the joint probability of transition function into the product of several conditional probabilities, which realizes the lossless compression of belief states space. Comparison experiments and RoboCupRes-cue simulation results show that the algorithm has the characteristics of lower error rate, higher convergence, and general applicability.

关键词

马尔可夫决策过程/动态贝叶斯网络/维数灾/信念状态空间/条件独立

Key words

MDP (Markov decision process)/ DBN (dynamic Bayesian network)/ curse of dimensionality/ belief states space/ conditional independence

分类

信息技术与安全科学

引用本文复制引用

仵博,吴敏,郑红燕,冯延蓬..基于动态贝叶斯网络的可分解信念状态空间压缩算法[J].信息与控制,2012,41(6):713-719,7.

基金项目

国家自然科学基金资助项目(61074058,60874042) (61074058,60874042)

广东省自然科学基金资助项目(S2011040004769). (S2011040004769)

信息与控制

OA北大核心CSCDCSTPCD

1002-0411

访问量0
|
下载量0
段落导航相关论文