| 注册
首页|期刊导航|自动化学报|多分辨率图像序列的超分辨率重建

多分辨率图像序列的超分辨率重建

李展 张庆丰 孟小华 梁鹏 刘玉葆

自动化学报2012,Vol.38Issue(11):1804-1814,11.
自动化学报2012,Vol.38Issue(11):1804-1814,11.DOI:10.3724/SP.J.1004.2012.01804

多分辨率图像序列的超分辨率重建

Super-resolution Reconstruction for Multi-resolution Image Sequence

李展 1张庆丰 1孟小华 1梁鹏 2刘玉葆3

作者信息

  • 1. 暨南大学信息科学与技术学院计算机科学系 广州510632
  • 2. 广东技术师范学院计算机科学学院 广州510665
  • 3. 中山大学信息科学与技术学院计算机科学系 广州510275
  • 折叠

摘要

Abstract

A blind super resolution (SR) image reconstruction algorithm based on scale invariant feature transform (SIFT) and image registration is proposed for multi-resolution image sequence taken in various focal lengths. First, SIFT keypoints in images are extracted. Then keypoint descriptors are matched initially under the criterion of vectorial angle cosine and outliers of matches are eliminated by random sample consensus (RANSAC) algorithm to improve registration accuracy. And registered low-resolution (LR) images are mapped onto a high-resolution (HR) grid according to their transform parameters. Finally, space pixels are filled in by a pixel reliability weighted algorithm to reconstruct the image with a higher resolution. Experimental results show that the proposed algorithm can estimate scaling factors accurately and it is effective in affine transformation and is robust to registration errors within a certain range. The algorithm can essentially improve the resolution of multi-resolution image sequence with relatively satisfactory reconstruction result especially under the condition when the number of low-resolution image frames is too small and available information for reconstruction is seriously insufficient.

关键词

超分辨率重建/尺度不变特征转换/多分辨率尺度/随机抽样一致性算法/仿射变换

Key words

Super resolution (SR) reconstruction/ scale invariant feature transform (SIFT)/ multi-resolution/ random sample consensus (RANSAC) algorithm/ affine transformation

引用本文复制引用

李展,张庆丰,孟小华,梁鹏,刘玉葆..多分辨率图像序列的超分辨率重建[J].自动化学报,2012,38(11):1804-1814,11.

基金项目

国家自然科学基金(61070090),中央高校基本科研业务费专项资金(21612413,21612414),广东省自然科学基金(10151063201000002),广东省科技计划重大专项项目(2010A080402005),广东省科技计划项目(2010B080701062)资助 (61070090)

自动化学报

OA北大核心CSCDCSTPCD

0254-4156

访问量0
|
下载量0
段落导航相关论文