| 注册
首页|期刊导航|哈尔滨工业大学学报(英文版)|Analog circuit intelligent fault diagnosis based on GKPCA and multi-class SVM approach

Analog circuit intelligent fault diagnosis based on GKPCA and multi-class SVM approach

SAN Ye GUO Ke ZHU Yi

哈尔滨工业大学学报(英文版)2012,Vol.19Issue(6):63-71,9.
哈尔滨工业大学学报(英文版)2012,Vol.19Issue(6):63-71,9.

Analog circuit intelligent fault diagnosis based on GKPCA and multi-class SVM approach

Analog circuit intelligent fault diagnosis based on GKPCA and multi-class SVM approach

SAN Ye 1GUO Ke 1ZHU Yi1

作者信息

  • 1. Control and Simulation Center, Harbin Institute of Technology, Harbin 150001, China
  • 折叠

摘要

关键词

greedy kernel principal component analysis/one-against-all/support vector machine/fault diagnosis/analog circuit

Key words

greedy kernel principal component analysis/one-against-all/support vector machine/fault diagnosis/analog circuit

分类

信息技术与安全科学

引用本文复制引用

SAN Ye,GUO Ke,ZHU Yi..Analog circuit intelligent fault diagnosis based on GKPCA and multi-class SVM approach[J].哈尔滨工业大学学报(英文版),2012,19(6):63-71,9.

基金项目

Sponsored by the National Natural Science Foundation of China(Grant No.61074127). (Grant No.61074127)

哈尔滨工业大学学报(英文版)

1005-9113

访问量0
|
下载量0
段落导航相关论文